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Abstract Statistical properties and extensions of Hedrick 
and Muona's method for mapping viability alleles causing 
inbreeding depression are discussed in this paper. Their 
method uses the segregation ratios among selfed progeny 
of a marker-locus heterozygote to estimate the viability re- 
duction, "s", of an allele and its recombination fraction, 
"c", with the marker. Explicit estimators are derived for c 
and s, including expressions for their variances. The de- 
gree of estimation bias is examined for cases when (1) the 
viability allele is partially recessive and (2) the marker lo- 
cus is linked to two viability loci. If linkage or viability re- 
duction is moderate, very large sample sizes are required 
to obtain reliable estimates of c and s, in part because these 
estimates show a statistical correlation close to unity. 
Power is further reduced because alleles causing viability 
reduction often occur at low frequency at specific loci in 
a population. To increase power, we present a statistical 
model for the joint analysis of several selfed progeny ar- 
rays selected at random from a population. Assuming a 
fixed total number of progeny, we determine the optimal 
number of progeny arrays versus number of progeny per 
array under this model. We also examine the increase of 
information provided by a second, flanking marker. Two 
flanking markers provide vastly superior estimation prop- 
erties, reducing sample sizes by approximately 95% from 
those required by a single marker. 
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Introduction 

Many studies have demonstrated that genetic markers may 
show distorted (non-Mendelian) segregation ratios when 
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linked to loci affecting viability (Sorensen 1967; Grant 
1975; Zamir and Tadmor 1986; Weeden and Wendel 1990; 
Lyttle 1991; Wagner et al. 1992). Hedrick and Muona 
(1990) showed how such distorted segregation ratios can 
be used to characterize viability alleles in self-fertile or- 
ganisms. If a plant with a heterozygous marker locus (A 1A2) 
linked to a heterozygous viability locus is selfed, one can 
use the frequencies of the three progeny marker genotypes 
(A1A 1, A IA2, A2A2) to estimate the viability reduction at the 
linked locus "s", as well as the recombination fraction 
between the marker and viability loci "c". Because there 
are only two degrees of freedom in the data, one must as- 
sume that the viability allele is completely recessive, as 
opposed to being partially recessive. Using their method, 
they found a near-lethal allele at a locus closely linked to 
an Esterase marker in Scots pine (Pinus sylvestris L.). 

Their method raises the prospect that the genetic basis 
of inbreeding depression in self-fertile species can be stud- 
ied at a resolution not attainable by classical methods (c.f. 
Savolainen et al. 1992 for summary), yet without the in- 
tensive labor involved with constructing saturated linkage 
maps, as only single loci are needed. With the advent of 
molecular markers (e.g., Botstein et al. 1980; Williams et 
al. 1990; Herne et al. 1992) this method shows promise for 
identifying and characterizing individual loci causing in- 
breeding depression in plants. 

However, the statistical properties of mapping recessive 
viability loci using single marker loci have not been con- 
sidered. In general, experimental designs and statistical 
power have only been investigated for methods used in 
mapping fecundity loci (e.g., Soller et al. 1976; Lander and 
Botstein 1989; Knapp et al. 1990; Carbonell et al. 1993; 
Darvasi et al. 1993; Van der Beek and Van Arendonk 1993). 
While mapping fecundity loci involves the comparisons of 
quantitative trait means among marker genotypes, map- 
ping viability loci involves analyses of marker genotype 
frequencies. The use of frequencies, as opposed to means, 
may result in different estimation properties. In addition, 
the robustness of estimating recessive viability alleles via 
single-marker loci warrants a study. For example, in a re- 
cent study, a graphical analysis of marker segregation in 
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31 selfed progeny arrays of  Mimulus guttatus plants indi- 
cated that viability alleles were most often partially dom- 
inant (Fu and Ritland 1994). Such dominance may bias the 
estimation of c and s. 

In this paper, we first derive explicit estimators for c 
and s using Hedrick and Muona's  (1990) method and pro- 
vide expressions for their variances. We then discuss the 
degree of estimation bias for those cases when the viabil- 
ity allele is partially recessive and when the marker is 
linked to two selected loci, and give sample sizes required 
to detect linkage. Furthermore, we explore experimental 
strategies for increasing the power of  estimating the link- 
age of marker loci to recessive viability loci. Two alterna- 

where uppercase P ' s  indicate estimated frequencies - those 
observed in the experiment. Since Eq. 1 is quadratic in c, 
there is a second solution, but this solution involves neg- 
ative values of c. 

Variance of estimates 

The variances and covariance of estimates are found by in- 
verting the Fisher information matrix, whose elements con- 
sist of expected second derivatives of the log-likelihood 
function (Stuart and Ord 1991). Using an analytical equa- 
tion solver, we found these variances and covariance to be 
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v($) 
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[2sc  4 - 4 s c  3 + 2 c  2 ( s - 1 ) + 2 c - 1 ] ( s - 4 )  2 
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c (s - 2) + 3 - s] (s - 4) 2 
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tives are considered: a statistical model for jointly analyz- 
ing several selfed progeny arrays and a flanking marker 
model for characterizing the increased information for the 
power of detection. 

Estimators and their variances 

Estimators 

Expanding upon the work of Hedrick and Muona (1990), 
we first derive the estimators of c and s, and formulas for 
their variances. Let us denote a plant with a heterozygous 
marker locus linked to a heterozygous viability locus as 
A1Bd/A2B+, where A is the marker locus, B the selected lo- 
cus, and d is the completely recessive, selected allele. If  
this plant is selfed, the expected frequencies of its progeny 
marker genotypes A1A1, AIA2, and A2A 2 are: 

1 - s + 2 s c - s c  2 
Pll = 4 - s  

2 ( 1 -  sc  + sc2) (1) 
P12 = 4 - s 

1 - sc  z 
P22-  4 - s  ' 

respectively (Hedrick and Muona 1990). Since Eq. 1 is a 
system of two independent equations with two unknowns, 
we can obtain the estimators as exact solutions of  Eq. 1 as: 

_ 2 P22 -- P12 (2) 
2 (P22 - Pll) 

4(/~ - P l l )  2 3= 
(1 + P22 - P l l )  2 - 4  P22 ' 

The denominator of Eq. 3 shows that linkage (c< 0.5) 
is required for estimation and that weak linkage causes high 
variance. Numerical examination of the correlation coef- 
ficient between c and s over various parameter sets reveals 
that ~ and 2 have a very high statistical correlation, with a 
coefficient usually greater than 95%. This has unfortunate 
consequences for the joint estimation of c and s, as dis- 
cussed below. 

LOD scores 

These estimates maximize the LOD score 

F PI1 7+ N12 lOgloF P12 ~ (4) LOD = Nil logm/0.25_] /0 .501 

I P22 ] 
+N22 l~ [_0.25d' 

where N 0 is the number observed for each marker geno- 
type. Following the common practice in gene mapping, 
Hedrick and Muona (1990) stated that a LOD value in ex- 
cess of 3 indicates significant linkage of a viability allele. 
This test is actually very conservative if applied to a sin- 
gle marker locus because by the likelihood ratio test cri- 
terion, -2  ln(L1/L0)=-4.30 LOD is distributed as Z 2 with 
2 degrees of freedom (note that the left side is the natural 
log and the right side loglo). Thus, a LOD value greater 
than just 1.3 indicates significance at the 95% level. This 
lower threshold for significance is acceptable if only a sin- 
gle marker locus is examined. If  more markers are exam- 
ined in the same experiment, a higher LOD threshold is re- 
quired; with a large number of markers, the correct 
critical value depends upon the total map distance in a ge- 
nome. 



The space of allowed segregation 

The pattern of distorted segregation of a marker linked to 
a viability locus can be precisely given by the range of the 
joint distribution of progeny genotype frequencies (P~I, 
P12, P22) in Eq. 1, wherein the bounds for c and s place 
bounds upon the p's.  Assuming the linkage phase A1Bd/ 
A 2 B+ as before, the range of pl 2 is 

1 < < 2 (5a) 
2 - P 1 2  - 3 

(these are the allowable values o f p l  2 in Eq. 1 for 0 <c<0.5 
and 0<s<l.0). The allowable range for P22, given P1> is 

x.,.'6 PI2 -- 3 P12 < P22 < 1 PI2 + (5b) 
2 - - 2  2 6 

(this was obtained by examination of limits for P12+P22 in 
Eq. 1). At this point, Pll  is determined. The ranges for 
the marginal distributions of progeny frequencies are 
1/2 <p12_<2/3, 1/4<1)22<1/3, and 0<p11<1/4. Equations 5a 
and b show that genotypes homozygous for markers 
coupling with deleterious alleles are always least frequent 
and heterozygotes always in excess. This is consistent with 
the findings of Zamir and Tadmor (1986) and Wagner et 
al. (1992) for the special case of s=l.  

Figure 1 graphically depicts the range of possible seg- 
regation ratios defined by Eqs. 5a and b. The "space" of 
allowed segregation under the completely recessive model 
of Hedrick and Muona is indicated in shadow. Regions out- 
side this space (but within the right half of the triangle) are 
occupied by other selection models, such as partial domi- 
nance and overdominance (see Fu and Ritland 1994). Fig- 
ure 1 shows that the "space" of segregation ratios under 
the completely recessive model is quite small and oblique. 
It is likely that the high statistical correlation between the 
estimates of c and s (Eq. 3) is related to the obliqeness of 
this allowed space of segregation. 

Fig. 1 The space of segregation ratios under the completely reces- 
sive selection model of Hedrick and Muona, as shown in shadow. 
The frequency of any one genotype is obtained by drawing a line 
perpendicular to the axis labeled by that genotype out to the point 
within the triangle representing the segregation ratio (only the right 
half of the equilateral triangle is occupied because allele 1 when ho- 
mozygous is arbitrarily defined to have lower viability than allele 2 
when homozygous) 
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Bias due to partial dominance 

Alternatives to the completely recessive model of Hedrick 
and Muona include selection models of additivity or par- 
tial dominance (Simmons and Crow 1977; Charlesworth 
and Charlesworth 1987; Fu and Ritland 1994). Such alter- 
natives are "violations" of the completely recessive model 
when the latter is assumed. In these cases, estimates of c 
and s using Hedrick and Muona's method are biased. To 
investigate these biases, we formulated a more general se- 
lection model with fitness regime l - s ,  1-hs, and 1 for gen- 
otypes BsB s, BsB+, and B+ B+, respectively, at the selected 
locus, where h is the degree of dominance. In this model, 
the expected frequencies of marker genotypes A 1A 1, A 1A2, 
and A2A 2 in progeny of a selfed double heterozygous plant 
A1 Bs/A2 B+ are 

c2 s (2h -1 ) -2cs (h -1 )+(1 - s )  
Pll = 4 - s  (2 h + l )  

2 ( - c  2 s ( 2 h - 1 ) + c s  (2 h-1 ) -h  s + l )  
P12 = 4 - s (2 h + 1) (6) 

c2 s ( 2 h - 1 ) - 2 c s h + l  
P22 = 4 - s ( 2 h + l )  

This was obtained by specifying the two-locus frequencies 
in selfed progeny, then summing over genotypes at the se- 
lected locus B. If h=0, the selection model becomes equiv- 
alent to the completely recessive model of Hedrick and 
Muona. Bias is obtained by substituting genotypic frequen- 
cies ofEq. 6 into Eq. 2 and subtracting these estimates from 
their true values. This gives 

bias (~) = h (1 - 2 c) 

h s (2 - h s) (7) 
bias (3) - 1 - h (2 - h s) " 

Equation 7 shows that the bias of both estimates is usu- 
ally positive. For example, when h=0.20, c=0.10, and 
s=0.65, the bias of 0is 0.16 and the bias of 2 is 0.39. Equa- 
tion 7 also shows that the bias of both estimates increases 
approximately linearly with h and that the bias of 0 is worst 
at low values of c while the bias of } is greater at high lev- 
els of s. Interestingly, the bias of } is independent of link- 
age c. 

With a moderate level of dominance h=0.20, a deleter- 
ious allele of large effect (e.g., s=0.65) will tend to be de- 
tected as a completely lethal allele (3=1.04). However, we 
note that for lethal or sublethal alleles, the level of domi- 
nance is probably low (h<0.03; Simmons and Crow 1977; 
Charlesworth and Charlesworth 1987), so that, in general, 
biases for these alleles are small. For example, when 
h=0.02, c=0.05, and s=0.95, the bias of ~ is only 0.04. 

Bias due to two selected loci 

The procedure of Hedrick and Muona (1990) also assumes 
the presence of just one selected locus in the vicinity of the 
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marker locus. I f  one marker is linked to more than one se- 
lected locus, estimation bias may occur. In the light of  re- 
cent findings of  the infrequent linkage of marker and vi- 
ability loci (Fu and Ritland 1994), one might expect that 
the linkage of multiple viability loci is uncommon, but it 
would still be of  interest to understand the degree of such 
an estimation bias, if any. For this reason, we examined the 
bias due to the linkage of two selected loci. For such a link- 
age, one must specify whether (1) these loci flank the 
marker or reside on one side of  the marker, and (2) the se- 
lected alleles are in coupling or repulsion with respect to 
each other. Because of this complexity, we resorted to 
Monte-Carlo simulations wherein 5,000 zygotes were ran- 
domly generated according to locus arrangement, strength 
of selection, and recombination fraction. A multiplicative 
fitness model was assumed, with the fitness of a double 
homozygote being (1-sa)  ( l -s2) .  Estimation was applied 
using Eq. 2, and the entire procedure replicated 1,000 
times. 

Table 1 gives the resulting biases of ~ and ~ in ten rep- 
resentative cases. We first discuss the case of  selected loci 
that flank the marker locus. When flanking selected loci 
are in coupling and c1=c2, estimates of  c show positive bias. 
When Ca> c 2, they tend towards the larger, c t. The esti- 
mated s shows a positive bias when either sl=s 2 or Sl<S 2. 
When flanking selected loci are in repulsion, both ~ and 
show extreme bias. 

The pattern of  bias is more complex when the selected 
loci are non-flanking with respect to the marker. When se- 
lected loci are in coupling, both b and ~ show positive up- 
ward biases in all three situations examined (C1=C2, Ct> C2, 

Table 1 The biases caused by two selected locilinked to a marker 
locus 

True value 

C1 S1 C2 $2 

Estimated value 

(Selected loci (Selected loci 
in coupling) in repulsion) 

Flanking 
0.20 0.90 0.20 0.90 0.26 1.53 0.52 0.00 
0.10 0.90 0.10 0.90 0 .15  1.29 1.97 0.00 
0.05 0.90 0.05 0.90 0 .08  1.15 -3.18 0.00 

0.30 0.45 0.05 0.90 0.11 1.08 1.15 0.59 
0.20 0.45 0.05 0.90 0.11 1.09 1.34 0.42 
0.10 0.45 0.05 0.90 0.09 1.06 1.64 0.28 

Non-flanking 
0.20 0.90 0.20 0.90 0.27 1.25 -0.62 0.16 
0.10 0.90 0.10 0.90 0.16 1.13 -2.99 0.04 
0.05 0.90 0.05 0.90 0.09 1.07 -8.16 0.01 

0.05 0.90 0.30 0 .45  0.10 1.05 -0.12 0.63 
0.05 0.90 0.20 0.45 0.10 1.05 -0.27 0.48 
0.05 0.90 0.10 0 .45  0.09 1 .02 -0.50 0.34 

0.30 0.45 0.05 0.90 0 .31 1.02 1.20 0.17 
0.20 0.45 0.05 0.90 0 .23  1.01 1.51 0.16 
0.10 0.45 0.05 0.90 0.14 0.99 1.81 0.16 

and c1<c2). Severe bias is found when selected loci are in 
repulsion. 

In summary, the presence of two selected loci in 
coupling generally results in estimates not representative 
of either selected locus. Both average c and s are usually 
overestimated. When the selected loci are in repulsion, ex- 
treme biases occur, with apparent overdominance of the 
neutral marker. 

Sample sizes required to reject the null hypothesis 
of no selected locus 

Under the completely recessive model, the null hypoth- 
esis of no linkage of a marker with a selected locus can be 
stated in two alternative ways. First, it can be stated in 
terms of the model parameters, as c=0.50 and/or s=0.00. 
The confidence interval of  either estimate, obtained from 
Eq. 3, is tested for overlap with these values. Because es- 
timates of c and s are highly correlated, their tests will be 
highly correlated, so that the choice of c versus s is rather 
arbitrary. Second, the null hypothesis can be stated in terms 
of the marker locus ratio, as the null ratio 1:2:1 and the 
LOD score (Eq. 4) is used to test for deviation from 1:2:1. 
This is a more general test that actually tests for the pres- 
ence of any model of selection (including dominance and 
overdominance). 

We first consider the expected sample size required to 
reject the null hypothesis, s=0.00, 95% of the time. We cal- 
culated sample sizes required to exclude the confidence 
interval for ~ from 0, or the value of N satisfying 

~v(~) 
- 1 . 9 6 \ /  N = 0 ,  (8) 

where V(~) is the variance of ~ (Eq. 3). The sample sizes re- 
quired to reject this null hypothesis are shown in Fig. 2a. 
Because sample sizes depend upon the true values of  both 
c and s, three representative values of s are plotted against 
the range of possible c values. 

In general, Fig. 2a shows that very large sample sizes 
are needed for a reasonable statistical power under the He- 
drick and Muona's  model. For example, an experiment 
with a sample size of  approximately 1,000 can be expected 
to detect only the close linkage (c< 0.10) of loci with 
s>0.40. An experiment with a sample of approximately 100 
can be expected to detect only close linkage of near lethal 
alleles (s = 1). This accords with the detection by Hedrick 
and Muona (1990) of  a near lethal (~0.896)  allele closely 
linked (~=0.084) to the Esterase  marker, based upon a sam- 
ple of  only 75 genotypes. 

Next, we consider the expected sample size required to 
reject the null hypothesis of  a 1:2:1 ratio at the marker lo- 
cus 95% of the time. Following Eq. 4, we calculated sam- 
ple sizes N satisfying 

( [ 111 N Pll l~ ~ +P12 lOglo/0.50~ 

+P22 l ~  1.3 - 
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Fig. 2a, b Sample sizes required to reject the null hypothesis of no 
linkage to a viability allele for three levels of deleterious effects. 
These sample sizes are determined on the basis of a the simultane- 
ous estimates of c and s and b the LOD test for deviation of the 1:2:1 
ratio 

These values of N are shown in Fig. 2b for the same set of 
parameter values as in Fig. 2a. Figure 2b shows that, in 
contrast, a much smaller sample size (5 % -  20% of the num- 
ber in Fig. 2a) is sufficient to reject the null hypothesis of 
no distorted segregation. But this is because the alterna- 
tive model is any model of  selection, ranging from incom- 
plete dominance to overdominance. Thus, while enticing 
in its properties, the LOD test is not appropriate unless a 
general model of  selection is invoked. 

Increasing power via multiple arrays of selfed progeny 

In natural populations, the frequency of a deleterious al- 
lele is usually quite low (Charlesworth 1992). Alleles of 
low frequency are not likely to be present in a sample con- 
sisting of a single parent. This facet of statistical power, 
e.g., the sampling of viability alleles from a population, 
was not incorporated into the above calculations (which 
assumed that a viability allele was present in a single, sam- 
pled parent). To incorporate the sampling of alleles from 
a parent population, a model involving several selfed prog- 
eny arrays is required. 

In this section, we present a statistical procedure, an ex- 
tension of Hedrick and Muona 's  model, that incorporates 
the frequency of the selected allele. This procedure is based 
upon the assay of several selfed progeny arrays. We as- 
sume a single selected allele in the population, with the 
same effect s among all individuals as well as the same re- 
combination fraction c with the associated marker locus. 
This selected allele exists in a heterozygous condition at 
frequency f. The likelihood of the data "D" from several 
selfed progeny arrays, wherein the k-th array has data D k 
consisting o f N  11.~, N12,k, N22,~ progeny of genotypes A IA i, 
AIA 2, and A2A 2, respectively, is the mixture model 

L(D)=Z kin [ ( l -J )  L(D k I h o m ) +  f L(D k t het)], (10) 

where the likelihood of the data assuming that the parent 
is homozygous for this selected locus is 

L (D~ I hom)=  (1 / 4) Nu'k (1 / 2) N]2'k (1 / 4) N22'k 

(Nij is the number of  each respective marker genotype) and 
the likelihood of the data assuming that the parent is het- 
erozygous at the selected locus is 

L (D k I het) = pN,,k pN~2,k pX=]~ 

(P0 is given by Eq. 1). 
For two major reasons, we now discuss with this model 

the optimal allocation of experimental resources. First, ex- 
perimental resources usually limit the assay of total num- 
ber of  progeny such that the assay of more progeny arrays 
reduces the number of progeny per array, and vice-versa. 
Second, with too few progeny arrays assayed, one may 
waste effort assaying non-informative arrays (homozy- 
gotes at the viability locus), but if too few progeny per ar- 
ray are assayed, alleles of small effect cannot be detected. 
To investigate an optimal allocation, we performed Monte- 
Carlo simulations. Data were simulated by randomly 
choosing parentage (heterozygous with probability 
2q ( l - q ) ,  where q is the frequency of the selected allele, 
otherwise homozygous),  and then randomly choosing 
progeny with probabilities Px 1, P12, and P22 (if heterozy- 
gous) or 1/4, 1/2, and 1/4 (if homozygous).  Estimates off ,  
c, and s were then found by numerically maximizing Eq. 
10. For each set of parameter values, 105 replications were 
performed. The power of detecting the selected allele was 
measured as the proportion of estimates of s greater than 
zero (whichever pa ramete r - f ,  c, or s - was used, the power 
showed the same trend). 

Figure 3 shows the power or probability of detecting a 
selected allele, for seven allocations. Total sample size was 
2,048, and six combinations of parameters were consid- 
ered: (f=0.05, 0.20)x(c=0.00, 0 .25)x(s=l .00,  0.70). Fig- 
ure 3a shows that for f=0 .05 ,  the optimal allocations vary 
from 64 progeny arrays/32 progeny per array at c=0.00 and 
s=l .00 to 16 progeny arrays/128 progeny per array at 
c---0.25 and s=0.70. Thus, as the allelic effect and/or link- 
age decrease, we require more progeny per array at the ex- 
pense of fewer progeny arrays; the power also decreases. 
Figure 3b shows that w h e n f  =0.20, optimal allocations in- 
volve fewer progeny arrays for the same parameter values; 
the overall power also increases. We also examined allo- 
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Fig. 3a, b Probabilities of detecting a selected allele for seven com- 
binations of number of selfed progeny arrays versus number of selfed 
progeny per array in a given sample of 2,048 progeny with six sets 
of parameter values. These probabilities are shown separately for the 
heterozygous parent frequencies (f) of a 0.05 and b 0.20 

cations with total sample sizes of 1,024 and 4,096 and 
found similar optimal allocations for the ratio, (number of 
progeny arrays)/(number of  progeny per array). 

These results show that many progeny arrays are re- 
quired to detect a selected allele with low frequency. While 
the number of progeny arrays depends upon the frequency, 
linkage, and selective effect of the allele, all of which are 
unknown until after the experiment is conducted, as a rule 
of thumb, we recommend 16-32 selfed progeny arrays in 
an experiment of  2,000 progeny total. For other sample 
sizes, the opt imum for the ratio (number of  progeny ar- 
rays)/(number of progeny per array) lies in the range of 1/8 
to 1/2. 

Increasing power via two flanking marker loci 

To increase the power of detection, one could also assay 
more marker loci in the vicinity of the selected locus. To 

Table 2 Marginal(Pi)andconditional(Jvij)probabilitiesofthethree 
genotypes of the viability locus for a given flanking marker geno- 
type 

Marker QQ Qq qq 
genotype Pi ~1 ]gi2 ~i3 
(0 

AABB (1 -c)2/4 ( l - r 1 )  2 2 r l ( 1 - r l )  rl 2 
AABb c(1-c) /2  (1-rl)(1-r2) rl+r2-2rlr 2 r]r 2 
AAbb c2]4 (1 -r2) 2 2r2(1 -r2) r2 2 
AaBB c(1-c)/2 rz (1- r l )  l - r l - r 2 + 2 r a r  2 q(1 - r2 )  
AaBb (1 -c)2/2 q ( 1 - r l ) / 2  [r12+(1-1"1)2]/2 rz(1-r2)/2 

+c2/2 +r2(1-r2)/2 +[r~+(1-r2)2]/2 + q ( 1 - q ) / 2  
Aabb c(1-c) /2  r (1-r2) 1 - r  1-r2+2rlr 2 r 2 ( l - q )  
aaBB c2/4 r) 2r2(1 -r2) (1 -r2) 2 
aaBb c(1 -c)/2 rlr 2 r l+r2-2r lr  2 (1 - rl) (1-r2) 
aabb (1-c)2/4 r 2 2 q  ( l - q )  ( 1 - @  2 

address this, we computed the power to detect linkage of 
a selected locus linked to two flanking markers as follows. 
The two marker loci are denoted A and B, and the selected 
locus Q. The recombination fraction between Q and A is 
c 1 and the recombination fraction between Q and B is c> 
If  a heterozygous plant of  genotype AQB/aqb is selfed, 
there are nine possible marker genotypes; the probabilities 
before selection are given in Table 2. These are divided 
into marginal (Pi) and conditional (Nj) probabilities, where 
i refers to marker genotypes (i=1 . . . . .  9) and j  to viability 
genotypes (j= 1 . . . . .  3). We assume the Haldane function 
with no interference, and define c=c1+c2-2Qc2, 
rl=ClC2](1-c), and r2=q(1-c2)/c (c is the recombination 
fraction between the markers). The expected frequen- 
cies of the marker genotypes after recessive selection 
are PT=Pi/(EPi), for i=1 . . . . .  9 and where Pi=Pi 
(Jril(1-s)+rcn+Tci3). Overall, there are three parameters to 
estimate (c 1, c2, and s), and 8 degrees of freedom in the 
data. 

Figure 4 shows the sample sizes required to detect a al- 
lele in a heterozygous parent with 95% probability. Figure 
4a was based upon applying Eq. 8, using the variance of s 
obtained by inverting the information matrix for ca, c2, and 
s. Figure 4b was based upon the LOD criteria, N Z  PTlogl0 
(P[/pi)>l.3. Note that the difference in the degree of free- 
dom between the numerator and the denominator in this 
LOD score is the same as in Eq. 9, namely 2, since under 
the null hypothesis the two marker loci may still be linked, 
i.e., c <0.50. 

The comparison of Fig. 4a to Fig. 2a shows that flank- 
ing markers provide much more efficient detection, as the 
required sample sizes are reduced to 2 -5% from those re- 
quired by a single marker. The pattern of efficiency de- 
pends upon the selective effect s. At s=0.40, flanking mark- 
ers are 16 times more efficient when markers are 10 map 
units away and 36 times more efficient when markers are 
30 map units away. At s=l.00, the opposite trend occurs 
for map distance; flanking markers are 293 times more ef- 
ficient when markers are 10 map units away and 37 times 
more efficient when markers are 30 map units away. At 
s=0.70, there is almost no dependence upon map distance 
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Fig. 4a, b Sample sizes required to reject the null hypothesis of no 
linkage to a viability allele for three levels of deleterious effects when 
a second flanking marker is used. These sample sizes are determined, 
on the basis of a the simultaneous estimates of c and s and b the LOD 
criteria 

(30-40 times more efficient). The pattern for the LOD cri- 
teria (Fig. 4b) is similar. 

Discussion 

While the sample sizes required to detect deviations from 
1:2:1 are relatively small, the sample sizes needed to reli- 
ably detect recessive viability alleles using Hedrick and 
Muona 's  method can be quite large (Fig. 2). This large dis- 
crepancy occurs because the former is effectively a test for 
any model of  selection, while the latter is a test for a spe- 
cific model, e.g., the completely recessive model. The high 
uncertainty of the joint estimates of linkage and viability 
fitness may be related to their high statistical correlation 
(Eq. 3) and the oblique space of allowed segregation (Fig. 
1). Also, the ability to detect viability loci is further re- 
duced by the low allele frequency of their occurrence in 
populations. To increase the probability of detection, we 
have presented two experimental strategies: the use of sev- 
eral arrays of  selfed progeny and the use of flanking mark- 
ers. Several selfed progeny arrays, selected randomly from 

a population, increase the probability of detecting an al- 
lele with low frequency. Flanking markers increase the de- 
grees of  freedom for estimation and greatly reduce the sam- 
ple size. 

We have demonstrated that in our proposed design of 
multiple selfed progeny arrays, there exists an optimal 
number of selfed progeny arrays (assuming the total num- 
ber of  progeny assayed is fixed). Although this optimum 
specifically depends upon unknown parameter values, a 
general rule of thumb for an experiment of total size 2,000 
is that 32 selfed progeny arrays are required if the selected 
allele frequency is as low as 0.03 and that 16 arrays are re- 
quired if the allele frequency is higher than 0.15. These 
numbers roughly agree with the relationship 
P r ( q ) = l - [ 1 - 2 q ( 1 - q ) ]  N, where Pr(q)  is the probability of 
detecting an allele in at least one of N arrays, which can be 
used as a simple rule to determine this experimental allo- 
cation. 

We have also demonstrated that with two flanking mark- 
ers, the required sample sizes are reduced by approximately 
95% relative to the case of a single marker. In other words, 
the assay of a second, flanking marker is much more effi- 
cient than the assay of another progeny (for a single 
marker). With two markers, the degrees of freedom in the 
data are much greater, and the statistical correlation 
between c and s reduced, resulting in the great increase of 
power. Although it may be difficult to locate a second, 
linked marker, the increased efficiency of flanking mark- 
ers places the highest priority upon an attempt to find linked 
markers for the study of loci controlling inbreeding depres- 
sion. 

Studies of inbreeding depression in even small portions 
of a genome, via the routine assay of a few isozyme mark- 
ers, would provide valuable information about viability 
loci (Fu and Ritland 1994). However, a more "saturated" 
marker map (e.g., Tanksley et al. 1992) is desirable not 
only to increase the span of the genome surveyed, but also 
to increase the probability that a locus causing inbreeding 
depression is flanked by two informative markers. If  ex- 
periments involving saturated marker maps are beyond the 
resources of an investigator, the best route is to survey 
small portions of the genome with pairs of linked markers. 
However, linked isozyme loci may not be easily found, 
given the relatively small number (10-20) of isozyme loci 
that can be routinely assayed in organisms. Although 
RAPD (randomly amplified polymorphic DNA, Williams 
et al. 1990) markers are much more numerous and linkage 
easier to find, their dominance makes them inappropriate 
for the methods considered here. A new class of markers, 
microsatellites (Herne et al. 1992; Morgante and Olivieri 
1993), seem to show greater promise for use as flanking, 
co-dominant markers for characterizing loci causing in- 
breeding depression. 
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